Looped Polymer Brushes Formed by Self-Assembly of Poly(2-vinylpyridine)-Polystyrene-Poly(2-vinylpyridine) Triblock Copolymers at the Solid-Fluid Interface. Kinetics of Preferential Adsorption

نویسندگان

  • Jose Alonzo
  • Zhenyu Huang
  • Ming Liu
  • Jimmy W. Mays
  • Ryan G. Toomey
  • Mark D. Dadmun
چکیده

The kinetics of assembly of a series of poly(2-vinylpyridine)-polystyrene-poly(2-vinylpyridine) (PVP-b-PS-b-PVP) triblock copolymers from the selective solvent toluene onto a silicon surface has been studied using phase-modulated ellipsometry. The adsorbed amount and thickness have been determined independently as functions of time. Even though the adsorbed amount as a function of time follows the traditional two-step process that is typical of the self-assembly of diblock copolymerssthere is an initial fast adsorption followed by a slow buildup of the layer (brush regime)sthe thickness shows an “overshoot” that corresponds to the brush regime. We attribute this phenomenon, not observed in the self-assembly of amphiphilic diblock copolymers, to having both ends of the chain tethered. The final ellipsometric thicknesses of the brush made from the triblocks are less than that expected for a single-end tethered brush made from a diblock copolymer with a buoy block of similar molecular weight. This result supports the conclusion that PVP-b-PS-b-PVP triblock copolymers adsorb mainly in a looplike conformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Origin of the Difference in Order-Disorder Transition Temperature between Polystyrene-block-poly(2-vinylpyridine) and Polystyrene-block-poly(4-vinylpyridine) Copolymers

Three polystyrene-block-poly(2-vinylpyridine) (S2VP diblock) and three polystyrene-block-poly(4-vinylpyridine) (S4VP diblock) copolymers with varying molecular weights and block compositions were synthesized via anionic polymerization, and their order-disorder transition temperatures (TODTs) were determined using oscillatory shear rheometry and small-angle X-ray scattering (SAXS). It has been f...

متن کامل

Nanorheology of Adsorbed Diblock Copolymer Layers

We investigate the mechanical properties of ultra-thin layers of polystyrene/poly (2-vinylpyridine) (PS/P2VP) block copolymers by means of a Surface Forces Apparatus adapted to operate as a rheometer at the molecular level. Two systems are studied: "brush/wall" and "brush/brush". A comparison of the normal force curves shows that when brushes are compressed against each other, they contract rat...

متن کامل

Creating surfactant nanoparticles for block copolymer composites through surface chemistry.

A simple strategy to tailor the surface of nanoparticles for their specific adsorption to and localization at block copolymer interfaces was explored. Gold nanoparticles coated by a mixture of low molecular weight thiol end-functional polystyrene (PS-SH) (Mn = 1.5 and 3.4 kg/mol) and poly(2-vinylpyridine) homopolymers (P2VP-SH) (Mn = 1.5 and 3.0 kg/mol) were incorporated into a lamellar poly(st...

متن کامل

Supramolecular Assemblies from Poly(styrene)-block-poly(4-vinylpyridine) Diblock Copolymers Mixed with 6-Hydroxy-2-naphthoic Acid

Supramolecular assemblies involving interaction of a small organic molecule, 2-hydroxy-6-Naphthoic acid (HNA), with poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymers are utilized to obtain micellar structures in solution, nanostructured thin films on flat substrates and, finally, nanoporous thin films. The formation of hydrogen bonds between HNA and the poly(4-vinylpyridi...

متن کامل

Polyoxometalate-modulated self-assembly of polystyrene-block-poly(4-vinylpyridine).

Polyoxometalates can serve as active components to induce and modulate the micellization behavior of polystyrene-block-poly(4-vinylpyridine).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017